国内精品久久久中文字幕,亚洲av无码,亚洲 国产?日韩?在线 一区,国语自产少妇精品视频

基于卷積神經網絡的移動機器人自適應光照增強單目視覺SLAM算法
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

云南省基礎研究計劃項目(202301AU070059)和昆明理工大學人才培養項目(KKZ320230104)


Adaptive Illumination Enhanced Monocular Vision SLAM Algorithm for Mobile Robots Based on Convolutional Neural Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    移動機器人視覺SLAM技術能夠在一定條件下實時估計自身在環境中的位置,并構建和更新環境稀疏或稠密三維地圖,這些信息可以幫助機器人提高對未知復雜環境的準確感知和適應能力,以執行更復雜的任務。但使用相機作為傳感器的視覺SLAM在定位和建圖的精度和穩定性方面在很大程度上依賴于采集到的圖像質量,在弱光照環境中,現有的視覺SLAM算法難以有效地工作。針對視覺SLAM在弱光照環境中定位精度降低和跟蹤丟失的問題。本文提出了一種適應弱光照環境的RLMV-SLAM算法,該算法使用一個輕量化的神經網絡對輸入圖像進行預處理,增強其亮度、對比度、色彩和去噪,同時,該算法使用地圖點補充策略、Sparse BA和一種實時增量閉環檢測方法提高了定位和建圖精度和魯棒性。在公開數據集和自采數據集上對該算法進行了實驗驗證,并與其他主流視覺SLAM方法進行了對比,結果表明本文提出的方法將弱光照環境中有效跟蹤時長提升30%以上,且在公開數據集上估計位姿的誤差也有明顯降低,證明了所提算法的有效性,為弱光照環境中同步定位和建圖提供了一定參考。

    Abstract:

    The visual SLAM technology of mobile robots can estimate their position in the environment in real time under certain conditions, and build and update sparse or dense 3D maps of the environment. This information can help robots improve their accurate perception and adaptability to unknown complex environments, and perform more complex tasks. However, the accuracy and stability of localization and mapping of visual SLAM using cameras as sensors largely depend on the quality of the collected images. In low-light environments, existing visual SLAM algorithms have difficulty working effectively. In response to the problems of reduced positioning accuracy and lost tracking faced by visual SLAM in low-light environments, a visual SLAM algorithm suitable for low-light environments, RLMV-SLAM was proposed. This algorithm used a lightweight neural network to preprocess the input images, enhancing their brightness, contrast, color, and denoising. At the same time, the algorithm applied a map point supplement strategy, Sparse BA, and a real-time incremental loop closure detection method to improve the accuracy and robustness of localization and mapping. The research experimentally verified this algorithm on public datasets and self-collected datasets, and compared it with other mainstream visual SLAM methods. The results showed that the method proposed can increase the effective tracking time in low-light environments by more than 30% and significantly reduce the pose error of pose estimation on public datasets, proving the effectiveness of the proposed algorithm and providing a reference for simultaneous localization and mapping in low-light environments.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳久朋,陳治帆,傘紅軍,趙龍云,彭真.基于卷積神經網絡的移動機器人自適應光照增強單目視覺SLAM算法[J].農業機械學報,2024,55(12):383-391,403. CHEN Jiupeng, CHEN Zhifan, SAN Hongjun, ZHAO Longyun, PENG Zhen. Adaptive Illumination Enhanced Monocular Vision SLAM Algorithm for Mobile Robots Based on Convolutional Neural Networks[J]. Transactions of the Chinese Society for Agricultural Machinery,2024,55(12):383-391,403.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-06-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發布日期: 2024-12-10
  • 出版日期:
文章二維碼